MODELLING EARLY RISK INDICATORS TO ANTICIPATE MALNUTRITION (MERIAM)

GLOBAL NUTRITION CLUSTER PREDICTIVE ANALYTICS WORKSHOP

FEBRUARY 22, 2021

- 1. Motivations & Aims
- 2. Methodology
- 3. Data
- 4. Results
- 5. Summary of Key Findings
- 6. Strengths and Limitations
- 7. Next Steps and Future Extensions

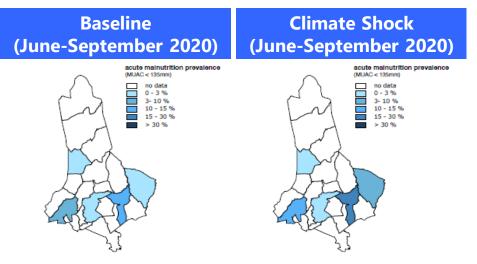
MOTIVATIONS & AIMS

- Decision-makers lack timely, evidence-based information on acute malnutrition that would allow them to act ahead of a crisis
- MERIAM's goal is to identify, test, and scale up cost-effective means to improve the prediction and monitoring of acute malnutrition, using open access secondary data
- Focus on climate- and conflict-affected regions
- MERIAM's methodology, employing two separate but complementary modelling approaches with different points of emphasis and levels of granularity, provides a state-of-the-art way to account for sub-national variation and temporal dynamics

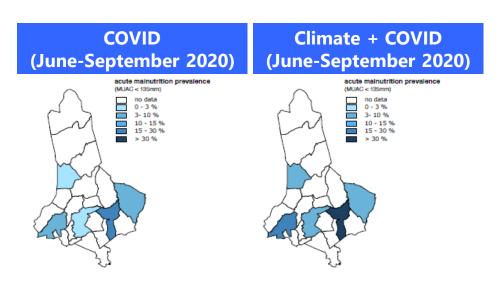
METHODOLOGY

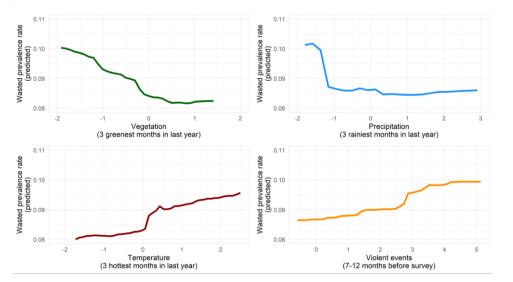
Literature Review and Needs Assessments									
Validation of Existing State-of-the-Art (FEWS NET)									
Computational Modelling	Econometric Modelling								
 Evidence-driven model Seeded and calibrated with empirical data, with specific focus on household-level decisions on acute malnutrition Accounts for variation in household characteristics and local, contextual factors, as well as aggregate covariates at macro level Prototypes for: Karamoja, Uganda; West Pokot, Kenya; Hawd, Somalia; and Turkana, Kenya 	 Subnational regional analysis Focus on GAM prevalence Aggregate regional- level factors Single model covering 29 countries 	 Multilevel analysis Focus on risk of individual child Select factors evaluated as leading indicators, alongside characteristics at multiple levels that are largely fixed Separate models for Kenya, Uganda, Mali, and Nigeria 							

Engagement, Dissemination, and Outreach


Scenario-Based Interactive Tool

Computational Modelling									
Prototype	Data Source	Period	Frequency	Sample Size (Children)	Spatial Informatio n	Malnutrition Measure	Relevance of Variables		
Karamoja (Uganda)	ACF, 2013	2010-2012	8 rounds (every 3 months)	13,455 (17,696)	Parish level	WHZ MUAC	Malnutrition; behavioral; household characteristics		
West Pokot (Kenya)	NDMA, 2017- 2019	2016-2019	33 rounds (every month)	9,875 (10,199)	Ward level	MUAC	Malnutrition; behavioral; household characteristics		
Hawd (Somalia)	FSNAU, 2019	2014-2018	10 rounds (twice a year)	8,390	District level	MUAC	Malnutrition; behavioral; household characteristics		
Turkana	NDMA 2017-	2016-2019	33 rounds (every	10,548 (11,568)	Ward level	MUAC	Malnutrition; behavioral;		
			Econome	etric Modelling)				
Subnational Regional Analysis				Multilevel Analysis					
Variable		D	ata Source		Variable		Data Source		
Wasting prevalence		DHS	DHS, MICS, SMART		WHZ		DHS		
Precipitation			CHIRPS		Precipitation		CHIRPS		
Temperature			CHIRTS		Temperature		GMF		
Conflict		ACLED, G	ACLED, GTD, SCAD, UCDP-GED		Conflict		ACLED, GTD, SCAD, UCDP-GED		
Vegetation			NDVI						


RESULTS


Computational Modelling

KENYA MERIAM BASELINE FORECASTS OF CHILD ACUTE MALNUTRITION PREVALENCE RATES (6-59 MONTHS) un-20 Jul-20 Sep-20 Nov-20 Aug-20 Oct-20 Dec-20 an-21 County Region Forecast High 9.7 7.2 7.7 10.6 0.2 7.2 9.4 7.1 **Best Estimate** 4.3 3.8 4.1 4.1 3.9 3.8 3.9 3.9 Kisii Nyanza Low 1.9 1.7 2.2 2.1 1.7 1.8 1.7 1.7 KENYA MERIAM SCENARIO-BASED FORECASTS OF CHILD ACUTE MALNUTRITION PREVALENCE RATES (6-59 MONTHS) un-20 Jul-20 an-21 County Region Forecast Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 High 10.2 10.0 10.6 10.2 9.5 10.3 10.6 10.5 📕 4.8 Nyanza **Best Estimate** 5.2 5.3 5.4 4.8 5.2 5.3 5.6 Kisii Low 1.6 2.0 1.9 2.2 1.8 1.9 1.7 2.1

(b) 6 month lead

Econometric Modelling

SUMMARY OF KEY FINDINGS

Open-source data can be used to predict acute malnutrition

Solid, consistent performance achieved vis-à-vis diagnostic metrics and state-of-the-art benchmarks

Results are robust across methodologies and models

Early warning can be extended from 1 month up to 6-8 months with minor loss of performance

Climate and conflict factors established as leading indicators

Analytical frameworks apply effectively to multiple priority countries (and beyond)

Results translatable to practical tools

Results meet needs of stakeholders

Further validation remains ongoing

STRENGTHS AND LIMITATIONS

STRENGTHS

Focus on acute malnutrition Prediction → early warning applications Assessment of leading indicators Multiple modelling methodologies Multiple levels of analysis Strong, consistent, robust performance Reliance on existing data User-centered design

LIMITATIONS

Data: availability, coverage, resolution, accuracy

Restricted to countries in sub-Saharan Africa Not all findings link to specific practical interventions

NEXT STEPS AND FUTURE EXTENSIONS

NEXT STEPS

Finish analyses

Complete development of tools

Publication of findings

Iterations of engagement with stakeholders

Build out strategies for sustainability

FUTURE EXTENSIONS

Broaden and deepen scope of analysis and validation

Enhance elements of decision-making support

Develop protocol and technologies of low-cost data collection

Institutionalization of MERIAM products into existing early warning systems

THANK YOU

